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* Active research areas 1n the atmospheric sciences 3 key simulations:
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intensification and the possibility for tornadoes
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{ Methods

1. Control case 2. Weak case 20% stronger 3. Strong case 120% stronger
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[ Storms are extremely sensitive to perturbations in their environment }
Ensemble Peak Vertical Vorticity Distribution
Supercell: An often dangerous convective storm that Downburst source: wet microburst-type mechanism
T T —— consists of a single, quasi-steady rotating updraft b O Y e s N A N R S
> 0.1 b intensities depending on storm pair Strong Case example Unsteady forward flank downdraft
orientation — same initial environment Mesocyclone: A cyclonically-rotating vortex, approx.
0.08 - 2-10 km wide .

- AMS Glossary Forward flank gust front (FFGF):
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Surface rotation strength (S)
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Ensemble Statistics of Peak Surface Vorticity

Strong case at 3 hrs 28 min, 17 min prior to the storm’s peak intensity

12000

\x'\ .
W
i

98% of two-storm simulations stronger than isolated control cell

Another perspective:
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Vertical cross- sectlon of simulated reflectivity at 3 hrs 20 min, 25 min prior to time of storm’s peak intensity

Mesocyclone

Q. How does horizontal
vorticity along the FFGF tilt
into the vertical?

Surface rotation strength (*10°s1)

SN 3 hrs 19 min, 26 min prior to peak intensity @&
Strong case at 3 hrs 19 min. Looking northwest at forward flank gust front. Horizontal vorticity
surface color-shaded by positive and negative vertical velocity. Vertical vorticity isosurface

shaded in white is associated with supercell’s mesocyclone. Yellow arrows depict winds at the
surface; FFGF separates warm inflow air in foreground from cold downdraft air behind it.
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Second discrete vertical vorticity maxima is Merges with mesocyclone; storm reaches
stretched as it moves down FFGF peak intensity

_ , ) A. Episodic downbursts behind the
Surface convergence, divergence, wind, and 0.07 s vertical

Ensemble member vorticity contours for strong two-cell simulation forward flank gust front
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